A Proposed Revision to the NSHM Generalization of the Salt Lake City Segment (Wasatch Fault) Surface Trace

by

James C. Pechmann
University of Utah Seismograph Stations

Acknowledgments

Ron Bruhn
Dave Dinter
Mike Perkins
University of Utah

Steve Personius
U.S. Geological Survey

Kim Olsen
Harold Magistrale
Daniel Roten
San Diego State University

Salt Lake City Segment Wasatch Fault

Trench Sites with Earthquake Dates

PENROSE DRIVE

LITTLE COTTONWOOD CANYON SOUTH FORK DRY CREEK

From DuRoss et al. (2012)

Mapped fault traces: Orange (post glacial) and Black (Quaternary) NSHM Generalized faults: Yellow (from Kathy Haller, 2008)

Problem

The NSHM generalization of the SLC segment (Wasatch fault) needs to be revised because it is inconsistent with the known surface trace. But how?

Options

- 1. Connect the stepovers in a manner consistent with the known Quaternary fault traces and other information.
 - a. The Roten et al. (2011) model (my proposal)
 - b. Other models?
- 2. Do not connect the stepovers and assume that the ruptures jump across them (more later).
- 3. Move the Warm Springs fault from the SLC segment to the Weber segment (not favored by paleoseismologists).

Alternative Generalization for SLC Segment (Roten et al., 2011)

- Why? 3-D model of the SLC segment needed for 3-D numerical ground motion modeling of an M \sim 7.0 earthquake on this segment.
- Basic model is from Bruhn et al. (1992) near surface, transitioning to 50° dip at depth.
- We decided to connect the stepovers based on:
 - (1) Mechanical considerations (structural geologists)
 - (2) Dynamic rupture considerations (seismologists): Dynamic rupture models do not support rupture jumps across 2- to 4-km gaps between en-echelon planar faults.
- Counter argument (Quaternary geologists): No evidence for a connection across the northern SLC segment stepover.

Bruhn et al. (1992) Model

- Based on slickenside and fault surface orientations at N and S ends of the segment
- Slip azimuth = 240°
- Assumes conservative barriers between fault sections with different strikes
- Dips of 35° to 72° ; mean $\sim 50^{\circ}$

Roten et al. (2011)
"Tear Fault"
Model

Effect on PGA for an SLC Segment M 7.0

- 1. At three hospitals in NE SLC, the geometric mean PGAs from four NGA GMPEs are 24-43% higher for the tear fault and rupture jump SLC segment models than for the NSHM model.
- 2. The PGAs estimated from the NGA relations are similar for the rupture jump and tear fault models at most sites BUT...
- 3. Based in part on the work of Liu et al. (2011), we would not expect these two models to produce similar ground motions in actual earthquakes or numerical simulations.

Conclusions

- (1) The NSHM generalization of the SLC segment of the Wasatch fault needs to be revised because
 - (a) It omits the northernmost 3 km of the EBF
 - (b) It puts a fault trace for which there is no evidence right through the middle of the downtown SLC high rise district, and
 - (c) The E-striking connection between the EBF and the Cottonwood section is less likely than a SE-striking connection
- (2) The Roten et al. (2011) model of the SLC segment is a reasonable alternative to the NSHM model if a continuous surface trace is preferred or required.
- (3) Model choice significantly affects ground motions.